Class Exercise

- 1. Prove the following limits: (a) $\lim_{z o z_0} {
 m Re}\ z = {
 m Re}\ z_0$;
 - (b) $\lim_{z o z_0}\overline{z}=\overline{z_0}$;
 - (c) If $\lim_{z o z_0}f(z)=w_0$, then $\lim_{z o z_0}|f(z)|=|w_0|$.
- 2. Show that the derivative $f^{\prime}(z)$ does not exist at any point z for the following functions:
 - (a) $f(z) = \operatorname{Re}(z)$;
 - (b) $f(z) = \operatorname{Im}(z)$.
- 3. Evaluate the following limits:
 - (c) $\lim_{z o z_0}rac{P(z)}{Q(z)}$, where P(z) and Q(z) are polynomials, and $Q(z_0)
 eq 0$.

- 1. Prove the following limits: (a) $\lim_{z \to z_0} \operatorname{Re} z = \operatorname{Re} z_0$;
 - (b) $\lim_{z \to z_0} \overline{z} = \overline{z_0}$;
 - (c) If $\lim_{z o z_0}f(z)=w_0$, then $\lim_{z o z_0}|f(z)|=|w_0|$.

Sol:

(a)

The $\delta - \epsilon$ definition states:

 $\lim_{z o z_0}f(z)=f(z_0) \quad ext{if for every $\epsilon>0$, there exists a $\delta>0$ such that <math>|z-z_0|<\delta \implies |f(z)-f(z_0)|<\epsilon.$

Here, $f(z)=\operatorname{Re} z$, and $|f(z)-f(z_0)|=|\operatorname{Re} z-\operatorname{Re} z_0|$.

Since $|\operatorname{Re} z - \operatorname{Re} z_0| \le |z - z_0|$ (a basic property of the real part of a complex number), choosing $\delta = \epsilon$ guarantees that:

$$|z - z_0| < \delta \implies |\operatorname{Re} z - \operatorname{Re} z_0| < \epsilon.$$

Thus, by the $\delta - \epsilon$ definition,

$$\lim_{z o z_0} \operatorname{Re} z = \operatorname{Re} z_0.$$

(b)

The complex conjugate of z is given by $\overline{z}=x-iy$, where z=x+iy. We aim to prove that:

$$\lim_{z o z_0}\overline{z}=\overline{z_0}.$$

From the $\delta-\epsilon$ definition, we need to show:

$$|z-z_0|<\delta \implies |\overline{z}-\overline{z_0}|<\epsilon.$$

The distance between \overline{z} and $\overline{z_0}$ is:

$$|\overline{z}-\overline{z_0}| = |(x-iy)-(x_0-iy_0)| = |(x-x_0)-i(y-y_0)|.$$

By the definition of the modulus of a complex number:

$$|\overline{z} - \overline{z_0}| = \sqrt{(x-x_0)^2 + (y-y_0)^2} = |z-z_0|.$$

Thus, choosing $\delta = \epsilon$ guarantees that:

$$|z-z_0|<\delta \implies |\overline{z}-\overline{z_0}|<\epsilon.$$

Therefore, by the $\delta - \epsilon$ definition:

$$\lim_{z o z_0}\overline{z}=\overline{z_0}.$$

We are given that $\lim_{z o z_0}f(z)=w_0$, which means:

For every $\epsilon>0, ext{ there exists a }\delta>0 ext{ such that } |z-z_0|<\delta \implies |f(z)-w_0|<\epsilon.$

The key inequality is:

$$\big||f(z)|-|w_0|\big|\leq |f(z)-w_0|.$$

This tells us that the distance between |f(z)| and $|w_0|$ is at most the distance between f(z) and w_0 . Therefore:

$$|z-z_0|<\delta \implies ig||f(z)|-|w_0|ig|\leq |f(z)-w_0|<\epsilon.$$

This means that for every $\epsilon>0$, there exists a $\delta>0$ (the same δ as for $|f(z)-w_0|<\epsilon$) such that:

$$|z-z_0|<\delta \implies ig||f(z)|-|w_0|ig|<\epsilon.$$

2. Show that the derivative f'(z) does not exist at any point z for the following functions:

(a)
$$f(z) = \operatorname{Re}(z)$$
;

(b)
$$f(z) = \operatorname{Im}(z)$$
.

Sol:

(a)

The derivative is defined as:

$$f'(z) = \lim_{\Delta z o 0} rac{\Delta w}{\Delta z},$$

where:

$$\Delta w = f(z + \Delta z) - f(z).$$

For $f(z)=\mathrm{Re}(z)$, the real part of z=x+iy is $\mathrm{Re}(z)=x$. Therefore:

$$\Delta w = \operatorname{Re}(z + \Delta z) - \operatorname{Re}(z).$$

Let z=x+iy and $\Delta z=\Delta x+i\Delta y$. Then:

$$\operatorname{Re}(z + \Delta z) = \operatorname{Re}((x + \Delta x) + i(y + \Delta y)) = x + \Delta x.$$

Thus:

$$\Delta w = \operatorname{Re}(z + \Delta z) - \operatorname{Re}(z) = (x + \Delta x) - x = \Delta x.$$

The derivative becomes:

$$rac{\Delta w}{\Delta z} = rac{\Delta x}{\Delta z}.$$

Now, $\Delta z = \Delta x + i \Delta y$. We evaluate $rac{\Delta x}{\Delta z}$ along different paths.

1. Horizontal path ($\Delta z = \Delta x + i0$):

• Here, $\Delta z = \Delta x$, so:

$$\frac{\Delta x}{\Delta z} = \frac{\Delta x}{\Delta x} = 1.$$

2. Vertical path ($\Delta z = 0 + i \Delta y$):

• Here, $\Delta z = i \Delta y$, so:

$$rac{\Delta x}{\Delta z} = rac{\Delta x}{i \Delta y}.$$

Since $\Delta x = 0$ along the vertical path, we have:

$$\frac{\Delta x}{\Delta z} = 0.$$

Since the limit depends on the path, the derivative f'(z) does **not exist** at any point z for f(z) = Re(z).

For $f(z)=\mathrm{Im}(z)$, the imaginary part of z=x+iy is $\mathrm{Im}(z)=y$. Then:

$$\Delta w = \operatorname{Im}(z + \Delta z) - \operatorname{Im}(z).$$

Let z=x+iy and $\Delta z=\Delta x+i\Delta y$. Then:

$$\operatorname{Im}(z + \Delta z) = \operatorname{Im}((x + \Delta x) + i(y + \Delta y)) = y + \Delta y.$$

Thus:

$$\Delta w = \operatorname{Im}(z + \Delta z) - \operatorname{Im}(z) = (y + \Delta y) - y = \Delta y.$$

The derivative becomes:

$$rac{\Delta w}{\Delta z} = rac{\Delta y}{\Delta z}.$$

Now, $\Delta z = \Delta x + i \Delta y$. We evaluate $rac{\Delta y}{\Delta z}$ along different paths.

- 1. Horizontal path ($\Delta z = \Delta x + i0$):
 - Here, $\Delta z = \Delta x$, so:

$$rac{\Delta y}{\Delta z} = rac{\Delta y}{\Delta x}.$$

Since $\Delta y=0$ along the horizontal path, we have:

$$rac{\Delta y}{\Delta z} = 0.$$

- 2. Vertical path ($\Delta z = 0 + i \Delta y$):
 - Here, $\Delta z = i \Delta y$, so:

$$rac{\Delta y}{\Delta z} = rac{\Delta y}{i \Delta y}.$$

Simplify:

$$rac{\Delta y}{\Delta z} = rac{\Delta y}{i\Delta y} = rac{1}{i} = -i.$$

Since the limit depends on the path, the derivative f'(z) does **not exist** at any point z for $f(z) = \operatorname{Im}(z)$.

3. Evaluate the following limits:

(c)
$$\lim_{z o z_0}rac{P(z)}{Q(z)}$$
, where $P(z)$ and $Q(z)$ are polynomials, and $Q(z_0)
eq 0$.

Sol:

(c)

1. Given:

- P(z) and Q(z) are polynomials, and $Q(z_0) \neq 0$.
- The function is $f(z)=rac{P(z)}{Q(z)}$, and we need to evaluate its limit as $z o z_0$.

2. Using Theorem 2:

- The limit of a quotient is the quotient of the limits (if the denominator is not zero).
- Polynomials are continuous, so $\lim_{z o z_0}P(z)=P(z_0)$ and $\lim_{z o z_0}Q(z)=Q(z_0)$.

3. Step-by-step:

$$\lim_{z o z_0}rac{P(z)}{Q(z)}=rac{\lim_{z o z_0}P(z)}{\lim_{z o z_0}Q(z)}=rac{P(z_0)}{Q(z_0)}.$$